

БЛОКИ ПИТАНИЯ КОМПАНИИ MEAN WELL МОЩНОСТЬЮ 1000 BT

POWER SUPPLY: PSPA-1000

В статье приведены основные технические характеристики и возможности блоков питания серии PSPA-1000 компании Mean Well.

Abstract - The main characteristics and possibilities of power supplies PSPA-1000 are considered in this article.

В. Котигорошко

V. Kotigoroshko

PSPA-1000 (рис. 1) – блоки питания выходной мощностью 1000 Вт с возможностью принудительного охлаждения благодаря использованию встроенного вентилятора [1, 2]. Номинальное выходное напряжение 12/15/24/48 В. Блоки питания изготавливаются в металлическом кожухе, имеют габаритные размеры 170×120×93 мм и ориентированы на применение в системах промышленной автоматизации, контрольно-измерительном и испытательном оборудовании, с серводвигателями постоянного тока, в лазерных системах, оборудовании информационных сетей, телекоммуникационном оборудовании и пр. Монтаж блока осуществляется с помощью винтов М3.

Рис. 1. Блок питания PSPA-1000

В табл.1 приведены основные характеристики блоков питания серии PSPA-1000, их структура приведена на рис. 2. Блоки снабжены встроенным активным корректором коэффициента мощности (PF). КПД до 94%. Предусмотрена защита от перегрева, перегрузки и перенапряжения. Кроме того, имеется возможность регулировки величины выходного напряжения в небольшом диапазоне, а также предусмотрена возможность дистанционного включения и выключения блока питания.

Блоки питания серии PSPA-1000 выдерживают вибрации уровнем до 2g в диапазоне частот 10...500 Гц. Диапазон рабочих температур -20...70 °С. В случае эксплуатации блоков питания на высоте более 2000 м над уровнем моря максимальная ра-

бочая температура, соответственно, уменьшается. В режиме обдува вентилятором рабочая температура снижается со скоростью 3.5 °C/1000 м, если принудительный обдув не используется, то скорость снижения составляет 5 °C/1000 м. Допускается кратковременное (не более 5 с) увеличение входного напряжения до 300 В. С целью исключения влияния падения напряжения на соединительных проводах на точность измерения напряжения на нагрузке для подключения датчика напряжения (рис. 3) предусмотрены специальные клеммы (RS-, RS+).

Допускается параллельное подключение до четырех блоков питания, что дает возможность увеличить выходную мощность (рис. 4). Выходное напряжение параллельно подключенных блоков питания не должно отличаться более чем на $0.2~\mathrm{B}$. При этом предпочтительнее использовать провода небольшой длины и с большим поперечным сечением. При параллельном подключении блоков питания максимальный суммарный выходной ток определяется из выражения $I_{\mathrm{MAX}} = 0.9NI_{\mathrm{H}}$, где, N – количество блоков питания, I_{L} – номинальный ток [1].

В настоящее время существует несколько методов расчета среднего прогнозированного времени наработки между отказами (Mean Time Between Failures – MTBF). К ним относятся метод MIL-HDBK-217F и Telcordia Special Report (SR) -332 (Bellcore). Т.к. существуют разные методы расчета, часто возникают проблемы при сравнении приведенных в документации разных производителей параметров надежности.

MIL-HDBK 217 – это военный справочник Military Handbook 217, впервые представленный Министерством обороны США в 1961 году с целью стандартизации алгоритмов определения параметров надежности военного электронного оборудования, что, в конечном счете, могло бы способствовать повышению надежности разрабатываемых изделий. В стандарте, по сути, изложены два метода прогнозирования времени между отказами, а также общие

28 www.ekis.kiev.ua

Таблица 1. Основные характеристики блоков питания серии PSPA-1000

	Обозначение					
Наименование параметра	PSPA-1000-12		PSPA-1000-24	PSPA-1000-48		
Вход						
Диапазон вх. напряжений, В	90264 переменного тока (4763 Гц), 127370 постоянного тока					
Вх. ток, А (вх. напряж. перем. тока, В)	8.5(115), 5 (230)					
КПД, типов., %	92	93	93.5	94		
Коэффициент мощности (РF), типов.	0.95 (230 В), 0.99 (115 В) при полной нагрузке					
Ток утечки, не более, мА	0.5 (240 В переменного тока)					
Пусковой ток, А (тип.)	20 (115 B), 40 (230 B)					
Выход						
Номинальное вых. напряж., В	12	15	24	48		
Номинальный вых. ток, А	80	64	42	21		
Номинальный вых. мощность, Вт	960	960	1008	1008		
Диапазон регулировки вых. напряж., В	1114	1417	2228	4656		
Суммарная погрешность вых. напряжения, %	±2					
Погрешность вых. напр. при изменении входного напряжения, %	±0.5					
Погрешность вых. напр. при изменении тока нагрузки, %	±2	±1.5	±0.5	±0.5		
Уровень шумов и пульсаций вых. напряж., п-п, макс. в полосе 20 МГц, мВ	150	150	200	250		
Время старта, мс	1000, 50 (115 B), 1000, 50 (230 B)					
Защита от перегрева	+ (с авт. восстановлением после устранения причины)					
Защита от перегрузки	105135% Р _{ном} (с авт. восстановлением после устранения причины)					
Защита от перенапряжения	14.5-16.5 B	18.2-20.6 B	29-33 B	58-65 B		
	с авт. восстановлением после устранения причины					

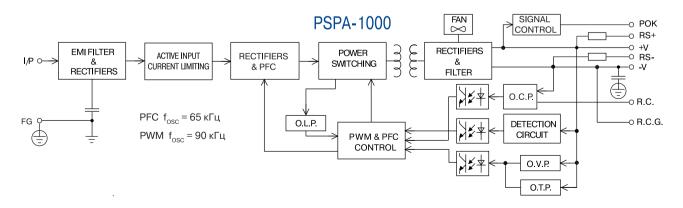


Рис. 2. Структура блока питания PSPA-1000

e-mail: ekis@vdmais.ua

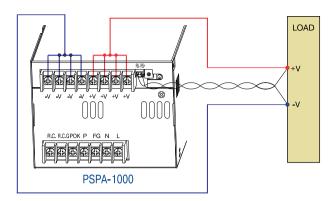


Рис. 3. Вариант подключения датчика напряжения к нагрузке

подходы для сравнения показателей надежности схожих изделий.

Теlcordia SR-332 (Bellcore). Первоначально этот метод определения надежности был разработан компанией Bellcore Communications Research, отсюда и название Bellcore. Этот метод широко применяется при расчете показателей надежности телекоммуникационного оборудования. Впоследствии, после приобретения компании Bellcore, название метода было переименовано в Telcordia. В его основе лежат рекомендации справочника MIL-HDBK-217, однако алгоритмы были модифицированы с учетом особенностей эксплуатации телекоммуникационного оборудования. Параметры надежности блоков питания PSPA-1000 приведены в табл. 2.

В стандарте EN61000-3-3 ("Электромагнитная совместимость. Часть 3-3. Нормы. Ограничение изменений напряжения, колебаний напряжения и фликера в общественных низковольтных системах электроснабжения для оборудования с номинальным током в одной фазе не более 16 А, подключаемого к сети электропитания без особых условий") приведены нормы и условия испытаний электро-

Таблица 2. Параметры надежности блоков питания PSPA-1000

Надежность, безопасность, окружающая среда,						
габаритные размеры						
Стандарты безопасности		UL62368-1, TUV EN62368-1, EAC TP TC 004				
Прочность изоляции, кВ (перемен. ток)		3 (вход/выход), 2 (вход/корпус), 0.5 (выход/корпус)				
Сопротивление изоляции, не менее, МОм		Вход-выход, вход-корпус, выход-корпус 100 (500 В пост. тока, 25°C, влажность 70%)				
	MIL-HDBK- 217F (25°C)	94.4				
время между отказами, мин., тыс. ч	Telcordia SR- 332 (Bellcore)	274.3				
Диапазон рабочих температур, °C		-2070				
Относительная влажность воздуха, %		2090 (без выпадения конденсата)				
Габаритные размеры, мм		170×120×93				
Масса, кг		1.93				
Гарантия		5 лет				

оборудования разного типа (холодильников, стиральных машин, фенов, водонагревателей, компьютеров, телевизоров, электроконфорок, других нагревательных элементов электроплит и пр.). Рекомендованные в этом стандарте нормы должны применяться к колебаниям напряжения и фликеру на сетевых зажимах испытуемого оборудования, измеренным или рассчитанным в соответствии с указаниями данного стандарта. Нормы, установленные

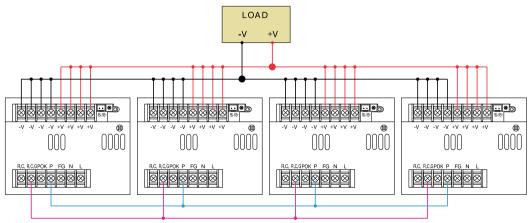


Рис. 4. Вариант подключения четырех блоков питания

30 www.ekis.kiev.ua

в стандарте, основаны преимущественно на субъективном восприятии фликера, наложенного колебаниями питающего напряжения на световой поток ламп накаливания мощностью 60 Вт с биспиральными нитями, рассчитанными на рабочее напряжение 230 В. Параметры электромагнитной совместимости блоков питания PSPA-1000 приведены в табл. 3.

Под термином фликер (flicker) в стандарте EN61000-3-3 подразумевается ощущение неустойчивости зрительного восприятия, вызванное световым источником, яркость или спектральный состав которого изменяются во времени. Иными словами, фликер – это субъективное восприятие человеком колебаний светового потока искусственных источников освещения, вызванных колебаниями напряжения в электрической сети, питающей эти источники (рис. 5). Например, обыкновенная лампа накаливания при снижении напряжения питания гаснет,

Рис. 5. Пример возникновения флуктуаций напряжения в сети

а при увеличении – светит ярче. Если колебания напряжения питания носят систематический характер, изменение яркости лампочки может негативно сказываться на человеке, вызывая у него излишнее утомление, вплоть до эпилептических припадков у некоторых людей.

Таблица 3. Параметры электромагнитной совместимости блоков питания PSPA-1000

Параметр	Стандарты	Примечание				
Электромагнитные помехи (EMC Emission)						
Кондуктивные помехи	EN55032 (CISPR32)/	Класс В				
Излучаемые помехи	EN55011 (CISPR11)					
Эмиссия гармонических составляющих потребляемого тока	EN61000-3-2	Класс А				
Ограничение изменений напряжения, колебаний напряжения и фликера (Voltage Flicker)	EN61000-3-3	_				
Электромагнитная устойчивость (EMC Immunity) Электромагнитная совместимость технических средств (стандарты EN55024, EN61000-6-2)						
Параметр	Стандарты	Примечание				
Устойчивость к электростатическим разрядам (ESD)	EN61000-4-2	Степень жесткости испытаний 3 (8 кВ воздушный разряд). Степень жесткости испытаний 2 (4 кВ контактный разряд)				
Устойчивость к излучаемому электромагнитному полю	EN61000-4-3	Испытательный уровень 3				
Устойчивость к наносекундным импульсным помехам	EN61000-4-4	Степень жесткости испытаний 3				
Устойчивость к выбросу напряжения	EN61000-4-5	Степень жесткости испытаний 4: • 2 кВ (линия-линия) • 4 кВ (линия-земля)				
Устойчивость к кондуктивным помехам, наведенным электромагнитным полем	EN61000-4-6	Степень жесткости испытаний 4				
Устойчивость к магнитному полю про- мышленной частоты	EN61000-4-8	Степень жесткости испытаний 4				
Устойчивость к провалам, кратковременным прерываниям и изменениям напряжения электропитания	EN61000-4-11	 провалы >95% в течение 0.5 периода провалы >30% в течение 25 периодов прерывания напряжения >95% в течение 250 периодов 				

e-mail: ekis@vdmais.ua 31

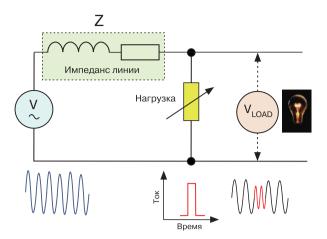


Рис. 6. Схема подключения, используемая при измерении фликера

В случае общей электропроводки при скачкообразном изменении нагрузки напряжение в сети изменяется синхронно с изменением нагрузки (рис. 6), что создает помехи для функционирования подключенного к сети оборудования. Объяснение простое. В образованном резистивном делителе изменяется эквивалентное сопротивление нагрузки и, соответственно, напряжение на участке электросети (V_{LOAD}).

Подключение электрического устройства, пред-

ставляющего собой переменную нагрузку, в сеть переменного тока приводит к флуктуациям напряжения в сети (рис. 5). Пример такого устройства – стиральная машина, которая содержит мощные электрические нагреватели и электродвигатели, потребляющие большой ток. Если к этой электропроводке подключены также лампы накаливания, то флуктуация напряжения может проявляться в виде модуляции светового потока светильника, т.е. мерцания (фликера). Наиболее неприятные ощущения у человека вызывают мерцания с частотой 8.33 Гц. Подобно любым другим воздействиям, если устройство чувствительно к колебаниям напряжения, существует проблема обеспечения электромагнитной совместимости.

Дополнительную информацию о новых блоках питания компании Mean Well можно найти в [1, 2] или в фирме VD MAIS – официальном дистрибьюторе Mean Well в Украине.

ЛИТЕРАТУРА

- 1. http://www.meanwell.com/py/productPdf.aspx?i=860.
- 2. http://www.datasheetlib.com/datasheet/577198/psp-1000-12_mean-well/download.html.

32 www.ekis.kiev.ua